
Timer - Periodicity and Synchronization

The CPM timer is used to achieve a that cooperate in the network. For example, all vehicles are synchronized behavior across different devices
supposed to publish their current state (like battery voltage) at the same time. Such a behavior can be achieved with the CPM timer. Timing is periodically
either performed using the current real time (system clock, synchronized using NTP) or a fictitious time, which is distributed by a central timing instance.

Synchronization across all participants in the RTI DDS network is very important for all tasks that

are performed on a regular basis and
require up-to-date information from other participants in the network to perform these tasks properly

Synchronization allows to coordinate different tasks across the network and gives some guarantees about the shared information. Some of these tasks are
caused e.g. by the mutual dependency between LLCs and HLCs. LLCs require to maneuver crash-free and regularly updated commands from the HLCs
as desired according to e.g. their planned trajectory. HLCs need up-to-date vehicle states from the LLCs to calculate commands that accommodate the
current state of the overall system.

CPM Timer (Timer.hpp)
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/Timer.hpp

The timer class can be used to call tasks periodically, based either on the (.hpp) (.hpp, system clock TimerFD or the simulated time TimerSimulated
timing signals are given by the LCC). It and can be (both by the LCC). Thus, can wait for a central start signal stopped when a stop signal is sent
timers on multiple systems can be started at the same time, and then work simultaneously if their period is set accordingly as well.

Several parameters must be set to use to cpm timer:

node_id (String): The unique ID identifying the timer in the network, so that the LCC can tell different timer signals apart
period_nanoseconds (uint64_t): The callback function of the timer is called every period_nanoseconds nanoseconds

Important

The timer can also be used to implement periodical behavior in your program, as its callback function is called every X nanoseconds after the
timer has been started (X is set by the user, and the timer must not be started externally if you set it not to listen for start signals).

https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Vehicle+Commands
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/Timer.hpp

offset_nanoseconds (uint64_t): Initial offset - 1 in real-time case (offset from unix timestamp 0), first callback time in simulated time case
wait_for_start (bool): If false, real-time timing is started immediately after creation without waiting for the LCC - this parameter is ignored by the
timer that uses simulated time, as there it is required to listen to a central timing instance
simulated_time_allowed (bool): Specify whether the task can be performed using simulated instead of real-time
simulated_time (bool): Indicates if simulated or real time should be used

The callback function is registered within the function. The timer can be started synchronously, blocking / using the current thread until it was start(...)
stopped, or asynchronously in a new thread, using . It can either be stopped manually using , which is especially useful if the start_async(...) stop()
LCC is not used for real-time timing purposes, or it can be stopped with an LCC command.

The registered in start until the timer is stopped, according to period, offset and the usage of simulated time. The callback function is called periodically
following figures illustrate the role of the timer in combination with the LCC as central timing instance.

There is also an option to set a : If it is set, the timer is not stopped when a stop signal is received, but instead calls this callback for the stop signal
function. You can set an empty callback to ignore stop signals, or define your own stopping behavior. You can call stop() at the end of the callback on the
timer object to actually stop the timer itself afterwards.

Real-time (TimerFD.hpp)
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/TimerFD.hpp

Real-time refers to the , given by the . To make sure that timestamps across different actual current time of the system system's current timestamp
devices are comparable, on these devices. In a real-time scenario, all participants begin their computation (after NTP is used for clock synchronization
being started either manually or by the LCC) at unix time , where n is the smallest n such that the overall term is greater than or equal to 1 + period * n
the point in time when the timer was started. This assures synchronized periodic behavior for the registered components (using callbacks) across all
devices. Real-time is useful whenever the system is used for real driving scenarios, e.g. when the actual physical vehicles are used.

The following drawing shows which role the LCC plays in the real-time timing case.

This timer's constructor also takes an to another value than max. uint64_t. optional parameter to re-define the stop-signal Do not change this value
 and only if you want your timer not to react to a global stop signal within the system, but a custom one. (If you just unless you know what you are doing

want , potentially empty, and pass that when starting the timer).to ignore the stop signal, define your own stop callback function instead

The timer also allows to get its start time. Most other details were already explained in the section.CPM Timer

Important

Only use TimerFD specifically if you do not need your timer to be able to switch to simulated time!

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/TimerFD.hpp

"Real" Time (SimpleTimer.hpp)
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/SimpleTimer.hpp

This timer is purposes. It can be used instead of not intended to be used for actual real-time for GUI tools etc. to achieve periodic threaded callback
a function in which are . Apart from that, it works like the timer above (TimerFD).periods multiples of 50 milliseconds

This timer can be killed easier - while a timer might take nanoseconds to be killed, the or TimerFD up to period_nanoseconds SimpleTimer is killed
destructed and thus does not block e.g. the UI for too long. within ~50 milliseconds

The support for a custom stop signal was mainly implemented to be used with this timer - if the SimpleTimer is used for other purposes than simulation,
then it might be undesired that the simulation's stop signal can stop this timer. To stop multiple running SimpleTimers at once, it might still be in the user's
interest to use a stop signal (differing from the one used in the simulation).

Simulated time (TimerSimulated.hpp)
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/src/TimerSimulated.hpp

Simulated time refers to a fictional measure of time, that is not related to the unix time of the physical devices on which the different tasks operate. Instead,
the current time is determined by a , in this case by the LCC. Simulated time can be central timing instance used to speed up or slow down the

 of a scenario, which might help to detect errors, to improve the timing of the individual components or to test faster how the system operates simulation
on the long run.

In a simulated time case, it is (here by setting differently for all participating tasks). required that all participants are uniquely identifiable node_id
After being invoked on their currently set time step, the participants register the next time when their callback function should be called according to the
fictional time measure, which is based on the offset and period settings. Initially, the LCC collects all these ready signals for the first timer callbacks until
timing is started manually by the user (or until ready signals from all pre-registered timers have been received). It then performs the following tasks in a
loop:

Select the smallest next fictional time stamp of all received timestamps (that is greater than the current simulated time) and send a system trigger
to all participants containing this time stamp
Wait for all participants that registered this timestamp to register a new, greater timestamp

The simulated time progresses this way until the timing is stopped in the LCC. The time can of course only progress if all participants send new ready
signals after they have been invoked (and after the work of their callback function has been done).

The following drawing illustrates which role the LCC plays in a simulated time use case.

If you just need threaded periodic behaviour in your code, without any real-time requirements, then use this timer instead of an own
implementation whenever possible.

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/SimpleTimer.hpp
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/src/TimerSimulated.hpp

LCC Timer
As mentioned before, the usage of requires a central timing instance. This instance is . simulated time and start and stop signals located in the LCC
Timing can be controlled by the user using the LCC's .UI

The central class for controlling the timing in the system is . In a real-time scenario, the class is merely used to send start and stop signals, TimerTrigger
and to keep track of which participants initially registered with a ready signal. These participants are shown in the UI, so registering them allows the user to
see if they perform as expected up to the creation of the timer - if they do not show up, something must have gone wrong in the application.

Important

Try not to use TimerSimulated specifically - use the CPM Timer instead, which can switch between real and simulated time based on the
settings taken in the LCC.

The class is also responsible for handling simulated time. Here, further tasks are required. The current simulated time as well as the newest ready signals
of the participants need to be stored. From the current time and the participants that rely on it, the system can also infer whether a participant is currently
working or waiting for another time step, and if it is out of sync (if only old ready messages are received by it). The class receives and processes all ready
signals so that the progression to the next smallest time step works properly. Of course, this also includes waiting for participants that are currently working
and have not yet registered a new time step in which they want to be woken up again.

get_time_ns.hpp
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/get_time_ns.hpp

Whenever you want to (as timestamp, in nanoseconds, using clock_gettime internally), use this function. This can be obtain the current system real-time
useful to e.g. obtain timestamps for your messages.

stamp_message.hpp
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/stamp_message.hpp

The function name is self-explanatory. If your message types includes and uses Header (https://git.rwth-aachen.de/CPM/Project/Lab/software/-/blob/master
), you need to . Both can be set using this function, where you pass your /cpm_lib/dds_idl/Header.idl set a create and valid_after stamp in one line

message object as reference so that the fields can be set on the original object. It is thus merely a that you are not required to use.convenience function

The create stamp usually should be the time of message creation.

The valid_after stamp tells the receiver when the message should become valid, e.g. right now (same as create stamp), in the near future (i.e. create
stamp + 1000000 nanoseconds) etc.

References

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/lab_control_center/src/TimerTrigger.hpp

https://github.com/embedded-software-laboratory/cpm_lab/tree/master/lab_control_center/ui/timer

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/get_time_ns.hpp
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/stamp_message.hpp
https://git.rwth-aachen.de/CPM/Project/Lab/software/-/blob/master/cpm_lib/dds_idl/Header.idl
https://git.rwth-aachen.de/CPM/Project/Lab/software/-/blob/master/cpm_lib/dds_idl/Header.idl
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/lab_control_center/src/TimerTrigger.hpp
https://github.com/embedded-software-laboratory/cpm_lab/tree/master/lab_control_center/ui/timer

	Timer - Periodicity and Synchronization

