
DDS Reader and Writer

A Short Notice on (A)Synchronous Readers

You can process data that you receive in two ways:

Asynchronously: The data is read immediately when it gets received (similar to interrupts, but in another thread instead of interrupting the
current control flow). You can get access to this data and e.g. store it in a thread-safe manner (e.g. using mutexes) into your own data structures,
which can be processed by your own threads or your main thread.
Synchronously: The data is stored in a buffer. When you call a function (like or), the received data (all data since the last function call / take read
only the most recent one / ... depending on your QoS settings) can be obtained. This can be done e.g. periodically in your main thread.

Reader.hpp

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/Reader.hpp

If data is read synchronously, the user might be interested in the most recent data only. For most of our own data types, we use a self-created header that
contains timing information:

create_stamp: Time (in nanoseconds) of data creation. The higher, the more recent is the data.
valid_after_stamp: Time (in ns) when the data can be used. Data is not supposed to be used before this point in time is reached.

The Reader class can be used to create a data reader from which , using . Data is valid only the most recent valid data can be requested get_sample
if its is lower than the current timestamp that is passed to the function with which you can obtain the most recent data (the .valid_after_stamp t_now
hpp should contain all required information). You can use it for data types like trajectories or vehicle data.

ReaderAbstract.hpp

https://git.rwth-aachen.de/CPM/Project/Lab/software/-/blob/master/cpm_lib/include/cpm/ReaderAbstract.hpp

If you only need a , then you should preferably use this class. It only basic DDS reader offers information regarding matched publications and a take()
. It does not require the user to know or understand DDS implementation details - please only used more advanced concepts if you really need to. function

 is available through the constructor. Setting QoS parameters

AsyncReader.hpp

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/AsyncReader.hpp

Data received by a can either be read synchronously or ly. The latter requires the usage of e.g. a StatusCondition, an DDS Reader asynchronous
AsyncWaitSet and a callback function. To save the users the time to look up which StatusCondition is (mostly) required and to write the > 10 lines of code
required for every single reader that relies on a callback function, AsyncReader is provided as a sort of that performs the set-up.wrapper

The class . Please be aware that your callback function will be called within the , so you must be passed a callback function AsyncReader's own thread
need to use e.g. a mutex to protect your data, and you might have to use lambda captures or std::bind to be able to access e.g. your class members from
within the function. It also requires a domain participant (or none, the default then is) and a topic (or a filtered topic) or topic string (for ParticipantSingleton
the topic name). Reliable communication can be turned on / off with a boolean parameter.

MultiVehicleReader.hpp

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/MultiVehicleReader.hpp

Like , but for multiple vehicles at once: Gather all received messages of type by all vehicles that publish on the (filtered) topic , then Reader.hpp T my_topic
return all newest samples when is used. For more information on the implementation, refer to . An example for a get_samples Reader.hpp
MultiVehicleReader is provided at the .central routing example

Writer.hpp

The Reader stores all received data in a ring buffer. The order in which data arrives is not regarded when data gets overwritten. Thus, some
slightly newer samples might get lost if is called infrequently - the Reader's buffer is not flushed regularly in between - and if data get_sample
does not arrive in the correct order.

Important

The reader in MultiVehicleReader uses a history of up to 2000 samples (it only buffers the most recent 2000 samples). This is due to
performance reasons and because take() might not return all received messages immediately (it sometimes needs to be called more than once
internally). The value of 2000 samples might not be enough depending on your scenario. In that case, i.e. if messages of some vehicles are
sometimes missing because the buffer is not large enough, you might have to increase this value.

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/Reader.hpp
https://git.rwth-aachen.de/CPM/Project/Lab/software/-/blob/master/cpm_lib/include/cpm/ReaderAbstract.hpp
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/AsyncReader.hpp
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/DDS+Participants+and+Topics
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/MultiVehicleReader.hpp
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Central+Routing+Example

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/Writer.hpp

This is a basic , which only . It does not require the user to DDS Writer offers information regarding matched subscriptions and a write() function
know or understand DDS implementation details and is thus recommended whenever a basic writer is required in your application. Setting QoS

 is available through the constructor. You can find examples for a writer-implementation in every provided example as it is essential to transmit parameters
the trajectory to the vehicles.

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/include/cpm/Writer.hpp

	DDS Reader and Writer

