
Basic Circle Example
You find the source code for our examples in the -folder:software

C++

https://github.com/embedded-software-laboratory/cpm_lab/tree/master/high_level_controller/examples/cpp/basic_circle

MATLAB

https://github.com/embedded-software-laboratory/cpm_lab/tree/master/high_level_controller/examples/matlab/basic_circle

Goal
One single vehicle will drive in a basic circle with a radius of 1m. The center of the circle will be in the center of the map, but the circle will not be
connected to the map. The circle shall drive continously.

Initialisation
Define the ID of the vehicle you want to drive. Read the ID in from the LCC using the function from our cpm library.cmd_parameter_ints()

Initialize a DDS for the RTI DDS Service to ensure that position and speed will be sent to the simulation and the vehicle. Write on the topic Writer vehicle
 with datatype . The topic's name is the name of the datatype with a lowercase letter.CommandTrajectory VehicleCommandTrajectory

Giving direction and speed
Define four points of your circle on a coordinate system.

Define the speed vector of the vehicle for each point for the entire trajectory. When you define v and v remember that v = sqrt(v ^2 +v ^2) (as it is a x y ges x y
vector). You use this vector to define the for your vehicle, so where it has to steer next. Always assign at least a small value to both vectors to direction
ensure the correct direction. Remember that your are defining a physical system, so avoid sharp edges.

Draw the vecotrs on each point of your trajectory:

https://github.com/embedded-software-laboratory/cpm_lab/tree/master/high_level_controller/examples/cpp/basic_circle
https://github.com/embedded-software-laboratory/cpm_lab/tree/master/high_level_controller/examples/matlab/basic_circle
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Command+Line+Parser
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=1212442

1.
2.
3.
4.
5.

6.

Now implement your points and speed values using the predefined vetors andtrajectory_px for your points of the trajectory and trajectory_py tra
The speed is given in m/s. Set the center of the circle to the center of the map at x =2, and for the speed at each point. jectory_vx trajectory_vy

25m and y= 2m.

Segment duration
For the segment duration keep in mind that speed, time and waylength have to fit. Verify your speed/way/duration with v =s /t . The ges segment segmentduration
segment duration shows the length of a timestep. Transforming it into a timestamp you need to add up all segment durations until the current timestep to
the start time: (mathjax-inline(t_i = t_0 + \sum_{n=1}^ {n = i-1})mathjax-inline)

Sending the trajectory information to the vehicle
All data are sent to the vehicle using the writer-function from the beginning in the form of

{point_x_position;
point_y_position;
velocity_x_direction;
velocity_y_direction;
timestamp;
}

where each value is a scalar.

Run the example
Compile your code.
Select the resulting executable as script the LCC.
Select vehicle 4 ().simulated mode
Run the HLC.
During the experiment, you will see a trail which builds and erases from point to point. This is your . Now move the simulated vehicle trajectory
close to the trajectory by to the circle trajectory. A second trail will be drawn which is the trajectory for your vehicle to dragging it to a close point
get the circle trajectory.
Once the vehicle is on the circle trajectory it will drive continously in endless loop.

Matlab specific information

First steps - what the HLC scripts need to include

Send a ReadySignal message after initialization - only the ID string matters, which must be of the form " , where the latter hlc_" + vehicle_id
is the ID of the vehicle the HLC is responsible for
Wait for the start signal sent by the LCC and propagated to the HLC by the Middleware to start the experiment
Receive VehicleStateList messages, which include the current states and observations of the vehicle as well as the current time. The history for
this signal is set to 1, but you may still get an outdated signal here if you missed a period during your computation and read the next
VehicleStateList in the middle of that next period. In that case, it may be better to skip that period as well and wait for the following one to start.
Send vehicle command messages as a result of the communication including the vehicle ID to the Middleware, which propagates these to the
vehicle
React to stop signals sent by the LCC and propagated to the HLC by the Middleware

https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=11698283
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=11698283
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Running+an+HLC
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Map+View
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Map+View

Your function head may differ, but you as your last parameter to pass vehicle IDs to your script. This allows you to define, must use varargin
for your script, which vehicle(s) it should be responsible for. Any previous parameters you define are your own 'custom' parameters and need to

 in the Lab Control Centers' UI before starting your script (if you wish to start it using the UI).be specified as additional parameters
For eProsima: You as the parameter before varargin to determine on which domain ID the HLC should must use matlab_domain_id
communicate with the middleware.

	Basic Circle Example

