
Matlab + RTI DDS
RTI DDS
This example is a on how to write a Matlab script that, together with the Middleware, communicates with a vehicle. This tutorial is based on our guideline
platoon example (which is just a series of vehicles following a preset path without much logic behind that behavior), which you can find in

https://github.com/embedded-software-laboratory/cpm_lab/tree/master/high_level_controller/examples/matlab/platoon

More specifically, we well take a look at .main_vehicle_ids.m

As you can see in the following sections, this script uses another script, called init_script.m.

Your Matlab script is or to perform timing operations with the LCC. This is the 's not supposed to directly communicate with the vehicle Middleware
task, so your task is (if you only want to control the vehicle). just to properly communicate with the Middleware

The Middleware will wake your script up regularly to perform a computation with the currently given values, and you just need to respond in a proper way.
This allows you to . Always ensure that the middleware's period in the LCC focus on problem solving instead of timing and communication
"Parameters" tab is set according to your expectations in the HLC.

Setup

The structure of your code

Your function head may differ, but you as your last parameter to pass vehicle IDs to your script. This allows you to define, for your must use varargin
script, which vehicle(s) it should be responsible for. Any previous parameters you define are your own 'custom' parameters and need to be specified as

 in the Lab Control Centers' UI before starting your script (if you wish to start it using the UI).additional parameters

function main(middleware_domain_id, varargin)
...
vehicle_ids = varargin;

In other words: If your function head looks like this

function main(some, params, middleware_domain_id, varargin)

then you need to pass as additional parameters in the LCC's UI (ignore the script path in the screenshot):some, params

Init script

The is similar (in its idea) to the cpm library for your C++ programs: It is supposed to for you. In this init script take care of redundant work
case, it sets up all relevant for the communication within the network. It also loads the required (message types), DDS participants IDL files
loads for QoS settings and sets the variable for the , which will be mentioned later on. It currently requires a given folder XML files stop signal
structure, which is automatically set up on the NUCs and should also be part of the software repository's structure - in an ideal case, you do not
need to worry about that, as long as you import the init script from its original place (it can also be found in ~/dev/software/high_level_controller
/examples/matlab/ on the NUCs).

You can find it here:

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/high_level_controller/examples/matlab/init_script.m

Working with RTI DDS in Matlab

Please consult to get an idea of how to work with DDS in Matlab. RTI DDS and Matlab

The parameter middleware_domain_id only exists in the eprosima branch and will not be added to the RTI Branch anymore! Don't use
this parameter if you use RTI DDS. Furthermore, the examples below use the RTI DDS syntax. eProsima syntax can be found .here

https://github.com/embedded-software-laboratory/cpm_lab/tree/master/high_level_controller/examples/matlab/platoon
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Middleware+Structure
https://github.com/embedded-software-laboratory/cpm_lab/blob/master/high_level_controller/examples/matlab/init_script.m
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=1212461
#

1.

2.
3.
4.
5.

Varargin covers the vehicle IDs that your script should be responsible for. The DDS Domain ID to communicate with the Middleware only via shared
memory is middleware_domain_id, its default value is 1. To be compatible with the LCC, which expects these two parameters to be available on calling
your script, you should always put them as the last two parameters in your function head as specified above.

What your HLC scripts need to include

Import the init script

You can see the sample code below. What you should do:

Set the Matlab domain ID to 1 in a variable of your choice. This domain is used to communicate directly with the Middleware. More information
can be found .here
Go to the right directory for the init script
Call the script and store the readers and writers that it sets up for you, as well as the stop signal (Which we call trigger_stop here).
Store the vehicle IDs from varargin. You will need them later.
The Middleware uses VehicleStateList data for timing purposes, i.e. if new data is received, you need to use it for your calculation, otherwise you
should wait until you receive more data. This is further explained down below. A waitset is set to wait upon taking data from the reader if no data
is yet available. The timeout is set to 10 seconds in this example, but you can also set a higher timeout.

https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Middleware+Usage

function main_vehicle_ids(middleware_domain_id, varargin) % middleware_domain_id only for eProsima + Matlab
 % Set the matlab domain ID for communicating with the middleware (which is always 1)
 matlabDomainID = 1;

 % Clear command window, store path of current script, go to that path
 clc
 script_directoy = fileparts([mfilename('fullpath') '.m']);
 cd(script_directoy)

 % Set the path of the init script relative to the path of your script (or absolute), assert that it exists,
add it to the path so that it can be found and than call it
 % Then go back to the script directory
 init_script_path = fullfile('../', '/init_script.m');
 assert(isfile(init_script_path), 'Missing file "%s".', init_script_path);
 addpath(fileparts(init_script_path));
 [matlabParticipant, stateReader, trajectoryWriter, systemTriggerReader, readyStatusWriter, trigger_stop] =
init_script(matlabDomainID);
 cd(script_directoy)

 % Remember the set vehicle IDs in a new variable
 vehicle_ids = varargin;

 %% Use a waitset for the reader of vehicle states, which is later used to indicate if a new computation
should be started
 % The waitset makes sure that take() or read() from the reader's storage does not return if no new data
is available (until the timeout is reached, here 10 seconds
 % so that one can still check for a stop signal regularly)
 stateReader.WaitSet = true;
 stateReader.WaitSetTimeout = 10;

 %% Do not display figures
 set(0,'DefaultFigureVisible','off');

Tell the Middleware that your script is ready to operate

You must send a ReadySignal message - only the , which must be of the form " , where the after initialization ID string matters hlc_" + vehicle_id
latter is the ID of the vehicle the HLC and thus your script is responsible for:

% (Assuming that vehicle_ids contains the IDs your script is responsible for)
% Send first ready signal to the Middleware to indicate that your program is ready to operate
% The signal needs to be sent for all assigned vehicle ids separately (usually, one script on one NUC only
manages one of the IDs)
% Also works for simulated time - period etc are set in Middleware, so you can ignore the timestamp field
for i = 1 : length(vehicle_ids)
 % Create a new msg of type ReadyStatus (idl)
 ready_msg = ReadyStatus;

 % Set the values of ready_msg
 ready_msg.source_id = strcat('hlc_', num2str(vehicle_ids{i}));
 ready_stamp = TimeStamp;
 ready_stamp.nanoseconds = uint64(0);
 ready_msg.next_start_stamp = ready_stamp;

 % Send the ready msg
 readyStatusWriter.write(ready_msg);
end

You use the type here, which was defined in one of the IDL files that was imported for you using the init script. You can see the values of ReadyStatus
this type in the IDL file:

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/dds_idl/ReadyStatus.idl

This message and to receive its data. Thus, at this point, your reader for vehicle states tells the Middleware that your script is now ready to operate
(here) should be initialized so that it can receive the data.stateReader

Consider the timing signals

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/cpm_lib/dds_idl/ReadyStatus.idl

This is very important. There are two signals you must consider: Start and stop signals. You have to , and check regularly for the stop signal once for
:the start signal

Start signal: This indicates that your script is supposed to calculate a new e.g. trajectory for the vehicles it is responsible for. Start with calculation
immediately and send the results back as soon as possible. The Middleware handles the rest.
Stop signal: was already set by the init script. It is the highest number representable trigger_stop = uint64(18446744073709551615)
with a uint64_t type. This number indicates that the simulation was stopped, and thus your script should immediately terminate.
All other numbers are irrelevant. From here on, new messages received by the reader of , are VehicleStateList (stateReader)
interpreted as start signals for less redundancy.

Waiting for the initial start signal may look like this:

% Wait for start signal / stop if a stop signal was received
got_stop = false;
got_start = false;
while(true)
 % Read the newest system trigger message, if one exists
 trigger = SystemTrigger;
 sampleCount = 0;
 [trigger, status, sampleCount, sampleInfo] = systemTriggerReader.take(trigger);

 % Go through all received messages since the last check, if they exist (sampleCount gives the number of
read messages)
 % Any received message would indicate "start", but you have to check if a stop signal was received as
well
 while sampleCount > 0
 % Check for stop signal
 if trigger.next_start().nanoseconds() == trigger_stop
 got_stop = true;
 elseif trigger.next_start().nanoseconds() >= 0
 got_start = true;
 end

 % Read the next sample and continue until sampleCount is zero again (all samples have been read
then)
 [trigger, status, sampleCount, sampleInfo] = systemTriggerReader.take(trigger);
 end

 % Stop the loop if a signal was received, then proceed with handling a stop signal (stop the program)
or a start signal (continue)
 if got_stop | got_start
 break;
 end
end

You need to repeat this procedure to check for the stop signal every time before you wait for the next start indicator sent by the Middleware (which is
indicated by new samples in). The loop, that includes calculating new data as well, may look like this:VehicleStateList

% Again: Go through all samples and stop the program if you received a stop signal
% break_while is the name used in the sample program (as it breaks the enclosing while-loop of the whole
program), but you could also name it e.g. stop_received
trigger = SystemTrigger;
sampleCount = 0;
[trigger, status, sampleCount, sampleInfo] = systemTriggerReader.take(trigger);

break_while = false;

while sampleCount > 0
 current_time = trigger.next_start().nanoseconds();
 if current_time == trigger_stop
 break_while = true;
 end

 [trigger, status, sampleCount, sampleInfo] = systemTriggerReader.take(trigger);
end

if break_while
 ...

1.

2.

Receive information about your vehicle

Information about your vehicle are contained in the messages, which include the c VehicleStateList urrent states and observations of all vehicles
as well as the . This signal is supposed to be the start signal for the HLC, so computation should start using this data directly after the current time
message was received.

These signals, which, in this example, you can obtain using the , contain two fields which are vital to the correct usage of your script.stateReader

The messages contain current information about the in the simulation. whereabouts and settings of your vehicle as well as any other vehicle
Use this data .for planning
The messages contain . Use these when you send commands to your vehicle - they contain the current time you set for the timing information
messages.

This signal has a third purpose as well. It shows the script when to start the computation, similar to a timing signal. The desired computation cycle is the
following:

Wait for a new message
After receiving a message, start your computation
Then the new (s) to the vehiclesend command
Remove messages that were received during computation, as they are old and potentially unusable, and for the next messagewait
... (repeat)

The history for this signal is set to 1, but you may still get an outdated signal here your and read the next if you missed a period during computation
VehicleStateList in the middle of that next period. In that case, it may be to that as well and wait for the following one to start.better skip next period

...
% Read the current vehicle information from the according reader, if such data is available
% Due to the set waitset, you wait for up to 10 seconds at take(...) if no data is available
sample = VehicleStateList;
status = 0;
stateSampleCount = 0;
sampleInfo = DDS.SampleInfo;
[sample, status, stateSampleCount, sampleInfo] = stateReader.take(sample);

% Check if any new message was received, then proceed with handling the data, computing your solution and
finally sending back a command to the vehicle(s) your script controls
if stateSampleCount > 0
 ...

Send commands to your vehicle

You need to send vehicle command messages as a result of your computation including the vehicle ID to the Middleware, which propagates these to the
vehicle. The implementation of the computation of e.g. the vehicle's trajectory is not explained here and depends on your task. You are only given an
example of how to send a simple trajectory here.

We are now taking a look at In the script which we were looking at , which, as you can see in the first code sample below, is called within the leader.m
platoon script. We use it to compute the next trajectory segment:

Important

The Middleware might already have been stopped by a stop signal while you are waiting for the next start signal in form of a VehicleStateList. It
is thus important to set a timeout for stateReader that is not too high, so that you can check for stop signals in between waiting for a new start
signal. On the other hand, you want to react as fast as possible to a new start signal, so the waiting time should also not be too low - only
consider stop signals if you can be sure that you should have received a new start signal by that time, i.e. after 10 seconds.

Important

All the scripts that you use internally , else they will not work when they are being deployed remotely.should be in the same folder

% Call the programs which calculate the trajectories of all HLCs, then send the results back to the vehicles
if (size(vehicle_ids) > 0)
 for i = 1 : length(vehicle_ids)
 msg_leader = leader(vehicle_ids{i}, sample.t_now);

 % Send resulting trajectory to the vehicle
 trajectoryWriter.write(msg_leader);
 end
end

In the following, you see an example of how to set up a trajectory message, that can then be sent using the :trajectoryWriter

%Create msg of type trajectory
trajectory = VehicleCommandTrajectory;

% Set the vehicle ID
trajectory.vehicle_id = uint8(vehicle_id);

% In this example, we only send one trajectory point (which is not sufficient for interpolation)
trajectory_points = [];
point1 = TrajectoryPoint;

% This trajectory point should be considered in the future, so add some nanoseconds to the current time, then
set the time stamp for the trajectory point
% t_eval here is the time that we got from the middleware in the VehicleStateList message - you are not
supposed to use your own clock / timer (else you would have trouble working with simulated time)
time = t_eval + 400000000;
stamp = TimeStamp;
stamp.nanoseconds = uint64(time);
point1.t = stamp;

% Set other trajectory values - position and velocity in 2D coordinates
point1.px = trajectory_point(1);
point1.py = trajectory_point(2);
point1.vx = trajectory_point(3);
point1.vy = trajectory_point(4);

% Append to the list of all trajectory points
trajectory_points = [trajectory_points [point1]];
trajectory.trajectory_points = trajectory_points;

% Send the trajectory to the vehicle
trajectoryWriter.write(trajectory);

Further Information

Bash script / Deploy Using the LCC

If you want to start your script using a bash script, you can do it like this:

/opt/MATLAB/R2019a/bin/matlab -logfile matlab.log -sd $script_dir -batch "$script_name(1, ${vehicle_id})"

Usually, you would want to , which takes care of these things for you.start it using the LCC instead

Deploying with Matlab GUI

See : If, within the , you do not select any script but leave the script field empty, only the Middleware gets started. You can then start your here setup tab
own script from within the Matlab GUI, it should detect the Middleware (if you set the correct number of vehicles, the Middleware will, if deployed locally,
wait for HLC messages for all vehicles that are currently online).

How to Actually Start Your Script

As mentioned before, the Middleware takes care of timing. As soon as your script has told it that it is ready to operate, the Middleware should appear in the
in the LCC. Then, you can start the simulation by sending a start signal (press on the start button). Of course, you need to Timer Tab deploy / start the

 to start the Middleware before you start the timer (and, if you do not use the Matlab GUI, your selected Matlab script as well).simulation

https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=11698283
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Running+an+HLC
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=11698283
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=11698289
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=11698283
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=11698283

	Matlab + RTI DDS

