
Indoor Positioning System
The Indoor Positioning System (IPS) detects the position and orientation (pose) and identity of multiple vehicles simultaneously. The poses are updated at
50 Hz.

Optics
The works with active light sources (LEDs) on the vehicles and a camera looking down from the ceiling. The LEDs are Indoor Positioning System Setup
detected based on their high brightness. The camera is set to a very short exposure (~100 microseconds). Thus, the ambient light creates a very small
signal (almost black), while the LEDs still appear as white dots. The short exposure time also eliminates the problem of motion blur. At a top speed of 4 m
/s the vehicle travels 0.4 mm during the exposure.

Other light sources and reflective surfaces on the vehicle can create false signals and must be covered with tape. This includes the connectors on the
Raspberry Pi and the status LEDs on the motor speed controller.

Vehicle Pose
The outer three LEDs indicate the vehicle pose and are permanently illuminated. The section describes how the LED positions are related Pose Calibration
to the reference pose.

Vehicle Identification
The central LED flashes in a pattern that is different for each vehicle. The patterns are chosen such that sampling effects do not create ambiguous signals.
See our paper for more information.Vision-Based Real-Time Indoor Positioning System for Multiple Vehicles

Vehicle ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Period of flashing, in number of frames 4 7 10 13 16 7 10 13 16 19 10 13 16 19 22 13 16 19 22 25 16 19 22 25 28

LED illumination duration, in number of frames 2 2 2 2 2 5 5 5 5 5 8 8 8 8 8 11 11 11 11 11 14 14 14 14 14

Software Architecture
The IPS software has two major components, the LED detection and the IPS pipeline. The LED detection reads images from the camera at 50 Hz and
extracts the list of image coordinates for all visible LEDs. These are published via DDS. The raw images are not saved or published, as this LedPoints
would create impractically large data volumes. The IPS pipeline processes the LED points and publishes s, which include the VehicleObservation
vehicle's position, orientation, identity and a timestamp.

https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Indoor+Positioning+System+Setup
https://cpm.embedded.rwth-aachen.de/doc/download/attachments/2293815/vehicle.png?version=1&modificationDate=1591346461755&api=v2
https://arxiv.org/abs/2002.05755

LED Detection
The LED detection uses the OpenCV functions , and to find the centers of the LEDs.cv::threshold cv::findContours cv::moments

IPS Pipeline
The IPS pipeline performs a relatively complex data processing task. To make the software easier to understand, it is broken down into independent,
stateless processing steps.

The function transforms the image/pixel coordinates to metric coordinates on the driving surface (floor). The calculation is based on a UndistortPoints
calibration image. See https://github.com/embedded-software-laboratory/cpm-lab/tree/master/matlab_scripts/camera_calibration

The function groups and classifies points as , , or . Points that appear to not belong to a vehicle DetectVehicles front center back_left back_right
are discarded.

The collects the 50 most recent samples of the vehicle points. This is necessary, as the vehicle ID can not be determined from a single image.Queue

The function extracts the ID for each vehicle from the last second (50 frames) of vehicle points.DetectVehicleID

The function calculates the vehicle reference pose based on the , and points. The calculation is based PoseCalculation front back_left back_right
on manually collected calibration data. See https://github.com/embedded-software-laboratory/cpm-lab/tree/master/matlab_scripts/ips_pose_calibration

The implementation can be found at https://github.com/embedded-software-laboratory/cpm-lab/tree/master/ips2/src

https://github.com/embedded-software-laboratory/cpm-lab/tree/master/matlab_scripts/camera_calibration
https://github.com/embedded-software-laboratory/cpm-lab/tree/master/matlab_scripts/ips_pose_calibration
https://github.com/embedded-software-laboratory/cpm-lab/tree/master/ips2/src

Calibration

Camera Calibration

First, other PVC canvases are removed from the floor to reveal the checkerboard canvas. Then an image of the checkerboard pattern is taken using the Py
. The exposure is adjusted such that the checkerboard corners are well resolved. If the exposure is too short or long, the corners are lonViewerApp

"rounded off", which degrades the quality of the calibration.

The Matlab function is used to determine a list of matching points . Then detectCheckerboardPoints (x_floor, y_floor, x_image, y_image)
a 5th order 2D polynomial is fitted to the data using linear least squares.

See https://github.com/embedded-software-laboratory/cpm-lab/tree/master/matlab_scripts/camera_calibration

Pose Calibration

The vehicle pose has the format . The yaw is the rotation angle in radians of the vehicle around the vertical axis in the counter-clockwise (x, y, yaw)
direction. When yaw=0, the vehicle points in the x-direction. The coordinates (x, y) give the location of the vehicle's . The reference point is reference point
defined as the geometric center between the front and rear axle.

To accurately implement this definition of the pose, another measurement and calibration procedure is performed. First we need a means of accurately
placing the vehicle on the floor, such that the true pose is known. The vehicle is clamped into a piece of wood, which extends the vehicle's local x/y
coordinate system. This makes it simple to manually align the vehicle with the checkerboard pattern.

While the IPS is running, the vehicle is placed in various poses on the floor, following a particular . The calibration features calibration sequence (back_x,
 are . A linear calibration is then fitted using least squares.back_y, direction_x, direction_y) recorded from the running IPS

Coordinate Systems

IPS Image Coordinates

The image coordinates correspond to the IPS image sensor pixels. They are only relevant for the IPS LED detection.

Floor Coordinates

(mathjax-inline(x \in [0, 4.5], y \in [0, 4])mathjax-inline)

X/Y units: Meter

Yaw unit: Radian

Origin: corner of the PVC canvas, towards the windows on the right.

Yaw angle: Measured from the x-axis, .counterclockwise

Useful yaw equations:

https://github.com/embedded-software-laboratory/cpm-lab/tree/master/matlab_scripts/camera_calibration
https://github.com/embedded-software-laboratory/cpm-lab/tree/master/matlab_scripts/ips_pose_calibration/pose_calibration.m#L30
https://github.com/embedded-software-laboratory/cpm-lab/tree/master/ips2/src/PoseCalculation.cpp#L41

direction_x = cos(yaw)
direction_y = sin(yaw)
yaw = atan2(direction_y, direction_x)

Vehicle Coordinates

X-axis: forwards

Y-axis: left

Origin: center point between both axles.

In practice, this coordinate system is .realized with a calibration jig

	Indoor Positioning System

