
Raspberry Pi Setup
Install . We currently use Debian 10 (Buster).Raspbian Lite
Change password by using

passwd pi

Activate SSH

sudo systemctl enable ssh
sudo systemctl start ssh

Install and configure NTP
Install tmux

 sudo apt install tmux

"Install" the RTI Connext libraries under by copying the arm-folder from the /usr/local/lib/ Main PC under opt/rti_connext_dds-
. This can of course only be done after the ARM libraries have been installed on the 6.0.0/lib/armv6vfphLinux3.xgcc4.7.2/ Main

. Computer

It should look like this afterward:

pi@raspberrypi-06:~ $ find /usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscppd.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscd.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddstransporttcpzd.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscpp2z.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlcppz.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtimonitoringd.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddstransporttcp.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscpp2.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscpp2d.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtimonitoringz.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddstransporttcpd.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscz.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscppzd.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddsc.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddstransporttcpz.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlcpp.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscpp.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscore.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtimonitoringzd.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscorez.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscppz.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscored.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlcppd.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddsjava.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscpp2zd.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddsczd.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddscorezd.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/libnddsjavad.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtimonitoring.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlcz.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlcppzd.a
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlc.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlcd.so
/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2/librtidlczd.a

'Register' the Libraries

Make the libraries available. Insert into . Then run/usr/local/lib/rti_connext_dds-6.0.0/armv6vfphLinux3.xgcc4.7.2 /etc/ld.so.conf

https://www.raspberrypi.org/downloads/raspbian/
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/NTP
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Virtual+Lab+Setup
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Virtual+Lab+Setup

sudo ldconfig

Configure Bootup Behaviour

Copy the file to on the git:software/vehicle_raspberry_firmware/bootloader_raspberry.bash /root/bootloader_raspberry.bash
Raspberry.

Enable autostart, using and insertsudo nano /etc/rc.local

tmux new-session -d -s "bootloader_raspberry" "bash /root/bootloader_raspberry.bash"

NTP configuration

See the NUC -Configuration.NTP

ID-Related Settings

Edit the file to give the Raspberry a unique name. The name should correspond to the vehicle ID, for example or /etc/hostname raspberrypi-06 ras
.pberrypi-42

Create a DHCP reservation for the Raspberry on the router. The vehicle ID is derived from the IP. The IP is where are the digits of 192.168.1.1XX XX
the vehicle ID.

Read-Only Filesystem

One crucial aspect regarding the Raspberry Pi is, that the vehicle will be turned off by using the switch on the bottom, mostly. That will directly cut off the
power supply of the RPI. In order to avoid damage to the OS, it is important to configure the filesystem to be read-only. For that, follow the instructions on ht

 (As alternative may also be tps://kofler.info/raspbian-lite-fuer-den-read-only-betrieb/ . https://www.mehr4u.de/raspberry-pi-mit-readonly-filesystem.html
used. Vehicle 20 is created by following the first link but using instead of .)fastboot noswap ro fastboot noswap

In order to make NTP working properly with a read-only filesystem, it is also necessary to copy the following file

cp /lib/systemd/system/ntp.service /etc/systemd/system/ntp.service

and to comment out inPrivateTmp=true

/etc/systemd/system/ntp.service

Applying RT-Patch

Because the vehicle needs to be real-time capable, a real-time patch (RT-Patch) should be applied to the underlying Linux Kernel.

Follow instructions to build the kernel. It is recommended to use the section instead of to speed up the process (e.g. these Cross-Compiling Local Building
~15 minutes vs. ~2 hours). Additionally, there has to be done several annotations:

Get Sources:
Make sure that there exists a real-time patch for the current kernel version. You can see this version by looking at the first lines of the
makefile residing in the cloned directory, e.g., by using
head Makefile -n 4
The currently existing real-time patches can be found .here

Before Build sources
Download the RT-Patch matching your kernel version and patch the kernel according to . (Execute the patch-command these instructions
in the root directory of the cloned git repository.)

Build sources
Run the commands which depend on the RPi version.

If you need to the file system, you can use (dependent on the folder you need access to)writing access

sudo mount -o remount,rw /
sudo mount -o remount,rw /boot

to remount the system.

https://cpm.embedded.rwth-aachen.de/doc/display/CLD/NTP
https://kofler.info/raspbian-lite-fuer-den-read-only-betrieb/
https://kofler.info/raspbian-lite-fuer-den-read-only-betrieb/
https://www.mehr4u.de/raspberry-pi-mit-readonly-filesystem.html
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://wiki.linuxfoundation.org/realtime/preempt_rt_versions
https://www.raspberrypi.org/documentation/linux/kernel/patching.md

Run , navigate to , choose and make menuconfig General Setup > Preemption Model Fully Preemptible Kernel (RT)
save.
Run the lastly given make command.

Make sure to use the parameter to configure how many threads are used for this command in order to speed up this -j n
process as explained.
It might happen that you are the .config file again which you already configured in the last step. (The console asked to set up
will show something like and asks you questions.) Then press and replace the command by*Restart config... strg+c
make ARCH=arm menuconfig CROSS_COMPILE=arm-linux-gnueabihf- zImage modules dtbs
Now, the menu will open again, but you can quit that by only and leaving the menu. Afterwards, the process should ?saving?
start building as usual.

Troubleshooting

It might happen that the system clock is not automatically synchronizing via NTP if it differs too much from the real-time. Firstly, take care that your
timezone is set correctly:

sudo raspi-config

In the opening UI go to: 4 Localisation Options I2 Change Time Zone None of the above UTC

Furthermore, you can force NTP to set the time once. Therefore, stop the service, force it, and restart it again :

sudo /etc/init.d/ntp stop
sudo ntpd -qg
sudo /etc/init.d/ntp start

Afterwards, NTP should synchronize automatically.

Repeating the process for several vehicles

In order to create identical vehicles it might be useful to clone the SD-cards by using . Afterwards, only the have to be Clonezilla ID-Related Settings
adapted at the cloned SD-card.

Cross Compilation and Software Distribution
The vehicle Raspberry software is cross-compiled from the master PC. The build script git:software/vehicle_raspberry_firmware/build.bash
creates an archive of the compiled software and other required files and publishes it via . The autostart script on Apache bootloader_raspberry.bash
the Raspberry downloads and runs this software.

ARP Table Generation
Because unsuccessful ARP requests sometimes block communication a static ARP table is sometimes useful. To generate one one needs to switch on all
participants, ping each one from the main PC and then output the arp table on the main pc with e.g. https://man7.org/linux/man-pages/man8/ip-neighbour.8.

 (newer) or (old). html arp -a
The info can then be used to feed a script that sets up the arp entries statically for the participants. Currently this is done in https://git.rwth-aachen.de/CPM

 and the static arp table is part of the package./Project/Lab/software/-/blob/feature/fastdds/mid_level_controller/package/start.bash

https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Cloning+Disks+with+Clonezilla
https://cpm.embedded.rwth-aachen.de/doc/pages/viewpage.action?pageId=1998879
https://man7.org/linux/man-pages/man8/ip-neighbour.8.html
https://man7.org/linux/man-pages/man8/ip-neighbour.8.html
https://git.rwth-aachen.de/CPM/Project/Lab/software/-/blob/feature/fastdds/mid_level_controller/package/start.bash
https://git.rwth-aachen.de/CPM/Project/Lab/software/-/blob/feature/fastdds/mid_level_controller/package/start.bash

	Raspberry Pi Setup

