
Visualization - Used in the LCC
Visualization messages can be sent to the LCC to draw basic shapes and text in the map view, where the vehicles are shown as well. An example use
case for this would be to draw the desired path that a vehicle is supposed to take on command, to check if it actually follows this path. The messages can
also be used to show additional information to the running program or simply to debug the sent trajectory by checking the created path visually.

Data structure

Each visualization message thus consists of seven data fields which need to be filled accordingly to draw the desired information in the LCC:

ID
visualization type
time_to_live
points
size
string_message
string_message_anchor
color.

ID

Each visualization command is identified by a ID. Choose different IDs for commands that should be displayed at the same time, or use the unique same
 an older visualization message.ID to override

The , so, if you want to draw symbols on top of each other, always make sure that you use the right order of IDs.highest ID is always drawn last

Visualization Type

Currently, four command types are supported:

Line
Polygon
Filled circle
String

Lines and polygons are defined by the points which are set in the structure data as well. In both cases, lines are drawn between subsequent points in the
array. The first and the last point are also connected by a line if you want to draw a polygon.

If you choose a string, you need to specify a single point as anchor. The drawn string will be attached to this anchor as specified in the field string_mess
. A string message will only be displayed, if you set the field _String Message_.age_anchor

A requires a single point which will be its center.filled circle

Time to Live

Each visualization command is after a given time. Here, you can set the time to live in nanoseconds.removed automatically

Points

This field defines the set of points between which lines should be drawn, or the point where the string message should be shown. The is coordinate system
the same as the one used for the vehicles.

Points is a custom IDL data type which is a struct Point2D { double x; double y}. Points are set according to the coordinate system.

Size

Polygons and lines interpret the size as , string messages as , and circles as .line width font size radius

String Message

Just set a string for this field (as RTI uses its own string format, be aware that setting this value with a std::string data type might lead to an error message,
but give it a try before you use RTI's own implementation).

String Message Anchor

Defines where a string message will be aligned, relative to the anchor point (the first entry of). You only have to specify this field manually, if it points
should be different from the : corner.default BottomLeft

https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Indoor+Positioning+System#IndoorPositioningSystem-CoordinateSystems
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Indoor+Positioning+System#IndoorPositioningSystem-CoordinateSystems

Center is also a possible value.

Color

Lines, polygons and strings can be given any color within the RGB spectrum.

Color is a custom IDL data type which is a struct Color { octet a; octet r; octet g; octet b . Color values are just values. The } regular RGB t
value should be .ransparency ignored

Usage example

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/lab_control_center/test/VisualizationTest.cpp

https://github.com/embedded-software-laboratory/cpm_lab/blob/master/lab_control_center/test/VisualizationTest.cpp

	Visualization - Used in the LCC

