

Exercise 1. (Longitudinal model)

Consider the longitudinal model $\dot{a}_{\text{long}}(t) = \frac{-1}{T_a} a_{\text{long}}(t) + \frac{1}{T_a} a_{\text{long}_{in}}(t)$.

- a) Discuss / apply the six modeling steps you know from the lecture on this model [Lunze, Regelungstechnik 1, pp 40-41], e.g.
 - 1. What is your modeling goal?
 - 2. Draw the block diagram. What is the output? What is the input?
 - 3. Find the state-space representation (which order is the system?).
- b) Program the model in MATLAB (with tf and the Laplace-transform or by implementing the ordinary differential equations (ODEs) and simulating with ode45) / Simulink (transfer block diagram).
- c) Simulate the model with different inputs and parameters (e.g. T_a). Observe and analyze the output.

Exercise 2. (*Point-mass model*)

Consider the point-mass model $\ddot{s}_x = a_x$, $\ddot{s}_y = a_y$, $\sqrt{a_x^2 + a_y^2} \le a_{\max}$.

- a) Discuss / apply the six modeling steps you know from the lecture on this model [Lunze, Regelungstechnik 1, pp 40-41], e.g.
 - 1. What is your modeling goal?
 - 2. Draw the block diagram. What are the outputs? What are the inputs?
 - 3. Find the state-space representation (which order is the system?).
- b) Program the model in MATLAB (with tf and the Laplace-transform or by implementing the ODEs and simulating with ode45) / Simulink (transfer block diagram).
- c) Simulate the model with different inputs. Observe and analyze the outputs.
- d) Warn the user when the constraint on a_{\max} is violated.

Exercise 3. (*Kinematic bicycle model*) Consider the kinematic bicycle model

$$\begin{split} \dot{s}_x(t) &= v(t)\cos(\psi(t) + \beta(t))\\ \dot{s}_y(t) &= v(t)\sin(\psi(t) + \beta(t))\\ \dot{\psi}(t) &= \frac{1}{\ell_{wb}}v(t)\tan\delta(t)\cos\beta(t)\\ \dot{v}(t) &= \text{this exercise}\\ \dot{\delta}(t) &= \text{this exercise}\\ \beta(t) &= \tan^{-1}\left(\frac{\ell_r}{\ell_{wb}}\tan\delta(t)\right) \end{split}$$

- a) Discuss / apply the six modeling steps you know from the lecture on this model [Lunze, Regelungstechnik 1, pp 40-41], e.g.
 - 1. What is your modeling goal?
 - 2. Draw the block diagram. What are the outputs? What are the inputs?
 - 3. Choose a behavior for modeling the change in speed v and steering angle δ .
 - 4. What are the model's states, parameters and inputs?
- b) Program the model in MATLAB (implement the ODEs and simulate with ode45) / Simulink (transfer block diagram).
- c) Simulate the model with different inputs. Observe and analyze the outputs.
- d) How does the side slip angle β relate to the steering angle δ ? plot the relationship in MATLAB.
- e) Linearize the ODEs with a first-order Taylor series. Determine where this linearization is sensible.
- f) Extend your model with constraints on acceleration and steering angle.
- g) This model incorporates the speed v at the vehicle center with distance ℓ_r to the rear axle. Express the speed v_ℓ at any point along the longitudinal vehicle axis depending on the speed at the rear axle. How does v_ℓ relate to the steering angle δ and the distance to the rear axle along the longitudinal vehicle axis ℓ_r ?

Exercise 4. (Vehicle model comparison)

The repo https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/tree/master/ MATLAB provides an implementation of several vehicle models.

- a) Add the point-mass model you implemented.
- b) Adjust the kinematic single-track model to incorporate the side-slip angle β .
- c) Compare the models. Use testVehicle.m as an orientation.