
Control and Perception in
Networked and Autonomous Vehicles
WS 23/24, B. Alrifaee, S. Schäfer

Lab 1: Setup and Lab Basics
Exercise 1. (Setup)
Download the provided virtual machine and follow its readme.md file to finalize the setup.

Make sure the tag ‘2223’ is checked out in the CPM Lab software repo. git status
should return ‘HEAD detached at 2223’. If it does, you can skip the steps of building
the software. If it does not, check out the tag with git checkout 2223 and rebuild the
software.

�
More information on the CPM Lab can be found in the documentation. The
documentation will be your guide for most tasks for the remainder of the lab.

Exercise 2. (Git)
If you are unfamiliar with git, go through the introduction to git provided through moodle.

Exercise 3. (Repository)

Create a private GitLab repository for your team. Invite your teammate and tutor and
name the repo as follows: cpnav_2223_group_<number><letter>. For example the
repository of group 2A should be named cpnav_2223_group_2A.

a)

For smooth execution of your code in the lab, clone your repo such that you end up
with the following folder structure (example for git repository TEAMREPO):
$HOME/dev
|-- software

|-- cpm_lib
|-- high_level_controller

|-- examples
|-- TEAMREPO
|-- ...

|-- indoor_positioning_system
|-- ...

�
The path to your repository will be called TEAMREPO in the following. The
path to the CPM Lab software will be called CPMLAB.

b)

Initialize your repo with the code base given at GitHub. Checkout the tag ‘2223’.c)

Exercise 4. (Controlling the vehicles)
Open MATLAB. Read how to run a high-level controller.

Execute the example CPMLAB/high_level_controller/01_direct_control/main.m
to see the vehicle moving in a circle.

a)

1

https://cpm.embedded.rwth-aachen.de/vm
https://cpm.embedded.rwth-aachen.de/doc
https://github.com/embedded-software-laboratory/control-in-networked-vehicles
https://cpm.embedded.rwth-aachen.de/doc/display/CLD/Running+an+HLC+outside+the+LCC

Control and Perception in
Networked and Autonomous Vehicles
WS 23/24, B. Alrifaee, S. Schäfer

The file CPMLAB/cpm_lib/dds_idl/VehicleCommandDirect.idl defines the message
format of messages sent to control the vehicle in direct control mode. What are the
contents of the interface definition language (IDL)-file? How is the message sent in
MATLAB?

b)

The file CPMLAB/cpm_lib/dds_idl/VehicleStateList.idl defines the message for-
mat of messages sent to give information about the vehicle states. What are the contents
of the IDL-file? How is the message read in MATLAB?

c)

Repeat Task b) and Task a) for the path tracking mode.d)
Repeat Task b) and Task a) for the trajectory following mode.e)

Checkpoint 1

Get a tutor to check your work. You should be able to

• run the path tracking example in your own setup

• explain how communication between components is realized in the lab

• explain the contents of a VehicleStateList message

• show a GitLab repository with the code template, and your team and tutor as members

• explain the git commands pull , add , commit , push

2

